Non-negatively Curved Kähler Manifolds with Average Quadratic Curvature Decay

نویسندگان

  • ALBERT CHAU
  • Albert Chau
چکیده

Let (M, g) be a complete non compact Kähler manifold with non-negative and bounded holomorphic bisectional curvature. Extending our techniques developed in [8], we prove that the universal cover M̃ of M is biholomorphic to Cn provided either that (M, g) has average quadratic curvature decay, or M supports an eternal solution to the Kähler-Ricci flow with non-negative and uniformly bounded holomorphic bisectional curvature. We also classify certain local limits arising from the Kähler-Ricci flow in the absence of uniform estimates on the injectivity radius.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume Growth and Curvature Decay of Positively Curved Kähler Manifolds

In this paper we obtain three results concerning the geometry of complete noncompact positively curved Kähler manifolds at infinity. The first one states that the order of volume growth of a complete noncompact Kähler manifold with positive bisectional curvature is at least half of the real dimension (i.e., the complex dimension). The second one states that the curvature of a complete noncompac...

متن کامل

On the Simply Connectedness of Non-negatively Curved Kähler Manifolds and Applications

We study complete noncompact long time solutions (M, g(t)) to the Kähler-Ricci flow with uniformly bounded nonnegative holomorphic bisectional curvature. We will show that when the Ricci curvature is positive and uniformly pinched, i.e. Ri̄ ≥ cRgi̄ at (p, t) for all t for some c > 0, then there always exists a local gradient Kähler-Ricci soliton limit around p after possibly rescaling g(t) alon...

متن کامل

On the Steinness of a Class of Kähler Manifolds

Let (M, g) be a complete non-compact Kähler manifold with non-negative and bounded holomorphic bisectional curvature. We prove that M is holomorphically covered by a pseudoconvex domain in C which is homeomorphic to R, provided (M, g) has uniformly faster than linear average quadratic curvature decay.

متن کامل

On the Complex Structure of Kähler Manifolds with Nonnegative Curvature

We study the asymptotic behavior of the Kähler-Ricci flow on Kähler manifolds of nonnegative holomorphic bisectional curvature. Using these results we prove that a complete noncompact Kähler manifold with nonnegative bounded holomorphic bisectional curvature and maximal volume growth is biholomorphic to complex Euclidean space C . We also show that the volume growth condition can be removed if ...

متن کامل

Volume Growth and Curvature Decay of Complete Positively Curved Kähler Manifolds

This paper constructs a class of complete Kähler metrics of positive holomorphic sectional curvature on C and finds that the constructed metrics satisfy the following properties: As the geodesic distance ρ → ∞, the volume of geodesic balls grows like O(ρ 2(β+1)n β+2 ) and the Riemannian scalar curvature decays like O(ρ − 2(β+1) β+2 ), where β ≥ 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005